[meteorite-list] December Geology Media Highlights
From: Ron Baalke <baalke_at_meteoritecentral.com>
Date: Tue Nov 30 15:45:36 2004 Message-ID: <200411302045.MAA28842_at_zagami.jpl.nasa.gov> http://www.eurekalert.org/pub_releases/2004-11/gsoa-dgm113004.php Public release date: 30-Nov-2004 Contact: Ann Cairns acairns_at_geosociety.org 303-357-1056 Geological Society of America December Geology media highlights Boulder, Colo. - The December issue of GEOLOGY covers a wide variety of potentially newsworthy subjects. Topics include: impact of shifts in the North Atlantic current on European climate; new method for estimating elevations of Earth's ancient land surfaces; evidence of terrestrial causes of the Permian-Triassic mass extinction; evidence of a major Precambrian asteroid impact in northwestern Australia; the relationship of intensified hydrologic cycles and global heat transfer during greenhouse phases of Earth's history; and insights into Martian mineralogy based on experiments involving weathering of iron phases in the Martian atmosphere. Highlights are provided below. Representatives of the media may obtain complimentary copies of articles by contacting Ann Cairns at acairns_at_geosociety.org <mailto:acairns@geosociety.org>. Please discuss articles of interest with the authors before publishing stories on their work, and please make reference to GEOLOGY in articles published. Contact Ann Cairns for additional information or other assistance. Non-media requests for articles may be directed to GSA Sales and Service, gsaservice_at_geosociety.org <mailto:gsaservice@geosociety.org> [snip] Iridium anomalies and shocked quartz in a Late Archean spherule layer from the Pilbara craton: New evidence for a major asteroid impact at 2.63 Ga Birger Rasmussen, University of Western Australia, School of Earth and Geographical Sciences, Perth, Western Australia 6009, Australia; and Christian Koeberl, University of Vienna, Department of Geological Sciences, Vienna A-1090, Austria. Pages 1029-1032. Several spherule layers in South Africa and Australia, with ages of ca. 3.4 to 2.6 Ga, have been interpreted as the result of large asteroid or comet impacts onto the early Earth. Some of these spherule layers show extreme enrichments in the PGEs, unlike modern ejecta deposits, which caused some questions regarding the initial impact interpretation. On the other hand, until now, no shocked minerals-the hallmark for all confirmed impact structures and ejecta-have been found in any of these spherule layers. Even rocks from the 2 Ga Vredefort impact structure contain abundant shocked minerals, so it is unlikely that Archean impacts would, for some reason, not produce shocked minerals. In the present work, Rasmussen and Koeberl document, for the first time, the presence of shocked quartz in a sample of the ~2.63 Ga spherule layer from the Jeerinah Formation (Pilbara craton, northwestern Australia). The survival of shocked quartz in ~2.63 Ga rocks, which have undergone multiple metamorphic events, suggests that their absence in other impact ejecta layers may not only be a question of preservation. The presence of shocked quartz in a layer containing melt spherules provides compelling evidence for an extraterrestrial impact with a target area that was at least partly silicic, favoring a continental impact site. In addition, enrichments in Ir and other siderrophile elements in the spherule layer indicate that they contain as much as 2-3 wt% of a chondritic meteorite component. If proposed correlations between the Australian spherule layer and similar South African layers are correct, then the combined ejecta blanket represents fallout from a single major impact with an areal distribution of >32,000 km2, which is among the largest yet documented in the Precambrian rock record. Thus so far the impact record on Earth is quite limited: nothing for the first billion years, then some spherule layers until about 2.5 Ga, and then some impact craters. Nevertheless, the discovery of these spherule layers aids in the discussion of the importance of impact events in the early parts of Earth's history. Clearly the "early" impact record on Earth, which spans more than half of the age of our planet, is still a wide-open field of research. ------------------------------------------------------------------- Weathering of iron rich phases in simulated Martian atmospheres Vincent Chevrier, Univ. Aix-Marseille 3, Aix en Provence - 13545, France; et al. Pages 1033-1036. We report about experimental weathering of iron phases (metal, sulfide, oxide) in carbon dioxide and water vapor, i.e., present day Martian atmosphere. Such experiments have never been conducted. We evidence that the neoformed mineral phases are similar to the ones invoked in the Martian regolith according to spatial probes data (including the MER rovers). Therefore the occurrence of such phases (carbonate, sulfate, oxyhydroxides) can no longer be taken as an evidence for formation of these minerals in presence of liquid water and oxidants not present today (oxygen, acids, etc.). Moreover these results emphasize the key contribution of "extramartian" materials (metal and sulfide due to meteorite bombardment) in the mineralogy of the Martian regolith. This contribution should be of wide interest for the present debate on the processes having affected the Martian surface, and thus on the interpretation of present rover data (Spirit and Opportunity) and on the question of life on Mars. ------------------------------------------------------------------- Evidence for sulfidic deepwater during the Late Permian in the East Greenland Basin Jesper K. Nielsen, University of Troms?, Department of Geology, Troms?, Norway; and Yanan Shen, Harvard University, Botanical Museum, Cambridge, MA 02138, USA. Pages 1037-1040. The most severe biological disaster over Earth's history occurred around the Permian-Triassic (P-Tr.) boundary of 251 million years ago. The causes of this biological crisis have been greatly debated. In order to find the killers of the P-Tr life, we went to the East Greenland Basin where the sedimentary rocks across the P-Tr. boundary are perfectly preserved. In the laboratory, we measured diameters of framboidal (strawberry-shaped) pyrite crystals from the Late Permian black shales. We discovered a remarkable size difference of framboidal pyrite between bioturbated shales and laminated organic-rich black shales. In bioturbated shales, the larger (>5 ?m) and wider distribution of framboidal pyrites clearly indicates oxic bottom water conditions. By contrast in laminated shales, the smaller (<5 ?m) and less variable distribution of framboidal pyrites provides compelling evidence for sulfidic deepwater during the Late Permian in the East Greenland Basin. In combination with S-isotope data, our geological and geochemical study indicates that the Late Permian oceans were quite similar to the modern Black Sea whose deepwater is enriched in malodorous H2S gas. We believe that high levels of noxious H2S gas in deepwater of Late Permian oceans severely restricted the ecological space available for animal survival. This oceanic H2S gas could have caused the P-Tr mass extinction if H2S-enriched waters had reached shallow water regions triggered by oceanographic processes and if H2S gas outgassed in to the atmosphere, to affect the marine and terrestrial environments. ------------------------------------------------------------------- [snip] Geochemistry of the end-Permian extinction event in Austria and Italy: No evidence for an extraterrestrial component Christian Koeberl, University of Vienna, Department of Geological Sciences, Vienna A-1090, Austria; et al. Pages 1053-1056. The Permian-Triassic (P-Tr) boundary is associated with the largest mass extinction known in Earth history. Following the association of the K-T boundary mass extinction with a large impact event, speculations bloomed that other major mass extinctions might also be related to impact events. However, so far the evidence in favor of such a proposal is controversial. Siderophile element anomalies (e.g., enhanced Ir contents) were found at some P-Tr boundary locations; their presence was also confirmed in the present work from elemental and isotopic analysis (using platinum group element abundances and osmium isotopes), but Koeberl et al. clearly showed that purely terrestrial processes were at work in concentrating these rare metals, and that there is no evidence for an extraterrestrial component. The present work also indicates that there are no traces the extraterrestrial helium-3 isotope, the alleged presence of which in the so-called fullerenes (large carbon molecules) has been the subject of a lot of debate. The sparse evidence for impact has recently resulted in suggestions of a possible buried underwater impact structure near Australia (Becker et al., Science May 2004), but it became rapidly clear that the evidence for the existence of such an impact structure (and any age information) is tenuous at best. On the other hand, recent research (e.g., Mundil et al., Science 305, 1760, 2004) succeeded in demonstrating that the P-Tr boundary event is exactly synchronous with the Siberian flood volcanism, indicating a causal link. This was also supported by sulfur isotope data for P-Tr samples, indicating a volcanic source (Maruoka et al., EPSL 206, 101, 2003). The work by Koeberl and coworkers provides, for the first time, clear evidence that most of the alleged indicators for an extraterrestrial signature are, in fact, of purely terrestrial origin. [snip] ### To view the complete table of contents for the December issue of GEOLOGY, go to http://www.gsajournals.org/gsaonline/?request=get-current-toc&issn=0091-7613. Geological Society of America 3300 Penrose Place-Box 9140 Boulder, CO 80301-9140, USA www.geosociety.org Received on Tue 30 Nov 2004 03:45:29 PM PST |
StumbleUpon del.icio.us Yahoo MyWeb |