[meteorite-list] The Leonids Meteor Shower -- The Best One Yet?
From: Ron Baalke <baalke_at_meteoritecentral.com>
Date: Thu Apr 22 09:47:11 2004 Message-ID: <200111161606.IAA10653_at_zagami.jpl.nasa.gov> ESA News http://www.esa.int 16 November 2001 The Leonids meteor shower -- best one yet? This year's Leonid meteor shower may well be one to remember. Astronomers are predicting a storm of meteors, or shooting stars, perhaps up to 15000 per hour on the night of 18-19 November, and spacecraft operators are standing by. Unfortunately, for those of us in Europe the Leonids will be below the horizon at that time. ESA scientists have gone 'down under' to catch the light show. Shooting stars Every 33 years, Comet Tempel-Tuttle travels through the inner Solar System. As it approaches the Sun, the comet's ices begin to vapourize and the embedded dust particles fall away and trail the comet in its orbit. Every year, the Earth passes through the trail of debris left behind by the comet, and the comet's dust particles plunge into Earth's atmosphere at some 71 kilometres per second -- fast enough to travel from Amsterdam to Moscow and back in about one minute. Comet Temple-Tuttle last passed close to the Sun and was visible from Earth in March 1998. On Sunday 18 November, Earth will once again pass through Comet Temple- Tuttle's dust tail. As the dust particles -- tiny meteoroids -- burn up in Earth's atmosphere, they give rise to 'shooting stars'. This display, known as the Leonid meteor shower because the meteors emanate from the constellation Leo (The Lion), may be most visible over both North America and Asia. This is because two separate maxima are predicted -- one on Sunday 18 November around 10:00 UT which favours American observers and again on the same day around 18:00 UT favouring observers in Australia and Asia. Observing campaigns Since Europe will not be a suitable location for Leonid observations this year, a group of ESA scientists have travelled half-way around the world to ensure that they get the best possible view of this visually spectacular but also scientifically interesting natural event. In addition to their studies of the meteor shower, the team, from the Research and Scientific Support Department of ESA, intend to test a new prototype of an instrument that is being developed for future planetary missions to Mars, Mercury and the Moon. Their campaign to observe the Leonid shower will take place between 15 and 19 November. "The primary objective of our campaign is to count the meteor trails and measure their brightness," said Detlef Koschny, one of the team members. "With our cameras, we can record many more meteors than are visible to the naked eye." "This will eventually enable us to calculate the changing numbers of meteors over the five-day observing period," he said. "We can then use this information to improve existing computer models of the many dust streams that are associated with Comet Tempel-Tuttle." "We will also learn a lot about the size and type of material that is being incinerated by studying its speed and light curve -- how each meteor trail brightens and dims as it burns up in the atmosphere," he said. They will also be attempting to record tiny changes in the electric field caused by the glowing meteor trails using a prototype of a sensitive electric field sensor that is very difficult to test in laboratory conditions. The isolated region of Australia where the team are based is suitable for testing such a sensitive instrument. Some of the team will also be busy testing another instrument, the Mutual Impedance probe. Similar to an instrument on the Rosetta lander, this probe is designed to measure how easily electrical current flows through the ground. This is a particularly useful technique for detecting subsurface water or ice, and so has potential for future applications on the Moon, Mars or Mercury. Across the world other observing campaigns, mostly land-based observations and a few airborne missions, will also be taking place. Historically, there has not yet been a large observing campaign covering the world's oceans. This year, however, the Dutch Meteorological Office KNMI has initiated a large marine meteor observing campaign. The combined 'meteor-counts', from both land and marine-based locations could lead to a detailed analysis of the dust-distribution in the Leonid meteor shower thereby contributing to a better understanding of the formation of the comet-tail of Comet Temple-Tuttle. Satellites at risk? Satellite operators will be keeping a close eye on their Earth-orbiting spacecraft during the meteor shower. ESA's operations centre in Germany has already issued guidelines and will be providing real-time data for spacecraft operators. Though the risk of damage from a stray speck of dust is greater than normal, officials are confident there will be no natural disasters in space. The International Space Station, where the current Expedition Three crew of Frank Culbertson, Vladimir Dezhurov and Mikhail Turin are wrapping up a four-month stay in space, has armour to protect itself against impacts from space debris as much as a few centimetres across. Most Leonids are much tinier specks of dust. Nevertheless, if a Leonid meteoroid does hit a satellite, the small grain could destroy an imaging mirror or plow through fragile parts such as an electricity-generating solar panel, possibly creating electrical shorts that could disable the craft. The demise of ESA's Olympus spacecraft is thought to have been caused by the Perseid meteoroid stream. Last chance? The year 2001 may be the last chance to get a clear understanding of the activity levels of these showers as Earth encounters various Leonid dust trails. Although the year 2002 has the potential to produce an even larger display than in 2001, a nearly full moon will wipe out the fainter meteors and hinder observations. After 2002, encounters with Leonid dust trails will decline. Models predict little activity for three years followed by 'normal' Leonid rates of 10 to 15 per hour. The models then indicate another peak of over 100 Leonids per hour in 2006 and a possible similar peak in 2007. Thereafter, it appears that the 33-year cycle of intense displays will end for nearly 100 years, as Jupiter will deflect the whole system of trails just enough to prevent further encounters with Earth. Related links * ESA Science: Leonids 2001 http://sci2.esa.int/leonids/leonids2001/ * ESOC Leonids real-time data tracking http://www.esoc.esa.de/pr/esoc.topics/2001.10/leonids-warning.php3 * World Meteorological Organization http://www.wmo.ch/ * Astronomical and Geophysical Observatory (AGO) http://www.uniba.sk/~ago/meteo_uk.htm * Astronet: Leonids 2001 http://www.xs4all.nl/~carlkop/leoe2001.html IMAGE CAPTIONS: [Image 1: http://www.esa.int/export/esaCP/ESA9NG8VTTC_index_1.html] Photo of the Leonids taken in 1998 by the Astronomical and Geophysical Observatory (AGO) in Modra, Slovakia. Taken with a fish-eye lens, the photo shows the whole sky. (Photo: Juraj Toth, Comenius University, Bratislava) [Image 2: http://www.esa.int/export/esaCP/ESA9NG8VTTC_index_1.html#subhead1] The constellation Leo rises at 23:30 CET (22:30 GMT). It can be seen above the south southwestern horizon just before dawn (Illustration: NASA) [Image 3: http://www.esa.int/export/esaCP/ESA9NG8VTTC_index_1.html#subhead2] Satellite photo showing the positions of observation stations and ships taking part in the land and marine-based observing campaign. (Photo: KNMI/GoesWest) [Image 4: http://www.esa.int/export/esaCP/ESA9NG8VTTC_index_1.html#subhead3] Earth orbiting spacecraft are not only at risk of being hit by Earth orbiting debris but to some extent also by meteorites (Illustration: Leonid Storm Fluence Calculator) Received on Fri 16 Nov 2001 11:06:51 AM PST |
StumbleUpon del.icio.us Yahoo MyWeb |