[meteorite-list] Ten Years of Discovery by Mars Reconnaissance Orbiter

From: Ron Baalke <baalke_at_meteoritecentral.com>
Date: Tue, 15 Mar 2016 16:11:59 -0700 (PDT)
Message-ID: <201603152311.u2FNBxjn029874_at_zagami.jpl.nasa.gov>


Ten Years of Discovery by Mars Reconnaissance Orbiter
Jet Propulsion Laboratry
March 9, 2016

Fast Facts:

* NASA's Mars Reconnaissance Orbiter arrived at Mars on March 10, 2006.

* Of the seven missions currently active at Mars, MRO returns more data
every week than the other six combined.

* The mission has shown how dynamic Mars remains today and how diverse
its past environmental conditions were.

True to its purpose, the big NASA spacecraft that began orbiting Mars
a decade ago this week has delivered huge advances in knowledge about
the Red Planet.

NASA's Mars Reconnaissance Orbiter (MRO) has revealed in unprecedented
detail a planet that held diverse wet environments billions of years ago
and remains dynamic today.

One example of MRO's major discoveries was published last year, about
the possibility of liquid water being present seasonally on present-day
Mars. It drew on three key capabilities researchers gained from this mission:
telescopic camera resolution to find features narrower than a driveway;
spacecraft longevity to track seasonal changes over several Martian years;
and imaging spectroscopy to map surface composition.

Other discoveries have resulted from additional capabilities of the orbiter.
These include identifying underground geologic structures, scanning atmospheric
layers and observing the entire planet's weather daily. All six of the
orbiter's science instruments remain productive in an extended mission
more than seven years after completion of the mission's originally planned
primary science phase.

"This mission has helped us appreciate how much Mars -- a planet that
has changed greatly over time -- continues to change today," said MRO
Project Scientist Rich Zurek of NASA's Jet Propulsion Laboratory, Pasadena,
California. JPL manages the mission.

Data from MRO have improved knowledge about three distinct periods on
Mars. Observations of the oldest surfaces on the planet show that diverse
types of watery environments existed -- some more favorable for life than
others. More recently, water cycled as a gas between polar ice deposits
and lower-latitude deposits of ice and snow, generating patterns of layering
linked to cyclical changes similar to ice ages on Earth.

Dynamic activity on today's Mars includes fresh craters, avalanches, dust
storms, seasonal freezing and thawing of carbon dioxide sheets, and summertime
seeps of brine.

The mission provides three types of crucial support for rover and stationary
lander missions to Mars. Its observations enable careful evaluation of
potential landing sites. They also help rover teams choose routes and
destinations. Together with NASA's Mars Odyssey, which has been orbiting
Mars since 2001, MRO relays data from robots on Mars' surface to NASA
Deep Space Network antennas on Earth, multiplying the productivity of
the surface missions.

The mission has been investigating areas proposed as landing sites for
future human missions in NASA's Journey to Mars.

"The Mars Reconnaissance Orbiter remains a powerful asset for studying
the Red Planet, with its six instruments all continuing capably a decade
after orbit insertion. All this and the valuable infrastructure support
that it provides for other Mars missions, present and future, make MRO
a keystone of the current Mars Exploration Program," said Zurek.

Arrival at Mars

On March 10, 2006, the spacecraft fired its six largest rocket engines
for about 27 minutes, slowing it down enough for the gravity of Mars to
catch it into orbit. Those engines had been used only once before, for
15 seconds during the first trajectory adjustment during the seven-month
flight from Earth to Mars. They have been silent since arrival day. Smaller
engines provide thrust for orbit adjustment maneuvers.

For its first three weeks at Mars, the spacecraft flew elongated, 35-hour
orbits ranging as far as 27,000 miles (43,000 kilometers) from the Red
Planet. During the next six months, a process called aerobraking used
hundreds of carefully calculated dips into the top of the Martian atmosphere
to gradually adjust the size of the orbit. Since September 2006, the craft
has been flying nearly circular orbits lasting about two hours, at altitudes
from 155 to 196 miles (250 to 316 kilometers).

The spacecraft's two large solar panels give MRO a wingspan the length
of a school bus. That surface area helped with atmospheric drag during
aerobraking and still cranks out about 2,000 watts of electricity when
the panels face the sun. Generous power enables the spacecraft to transmit
a torrent of data through its main antenna, a dish 10 feet (3 meters)
in diameter. The total science data sent to Earth from MRO -- 264 terabits
-- is more than all other interplanetary missions combined, past and present.

Lockheed Martin Space Systems, Denver, built the spacecraft with the capability
to transmit copious data to suit the science goals of revealing Mars in
great detail, which requires plenty of data.

For example, the mission's High Resolution Imaging Science Experiment
(HiRISE) camera, managed by the University of Arizona, Tucson, has returned
images that show features as small as a desk anywhere in observations
that now have covered about 2.4 percent of the Martian surface, an area
equivalent to two Alaskas, with many locations imaged repeatedly. The
Context Camera (CTX), managed by Malin Space Systems, San Diego, has imaged
more than 95 percent of Mars, with resolution showing features smaller
than a tennis court. The Compact Reconnaissance Imaging Spectrometer (CRISM),
managed by Johns Hopkins University Applied Physics Laboratory, Laurel,
Maryland, also has imaged nearly 98 percent of the planet in multiple
visual-light and infrared wavelengths, providing composition information
at scales of 100 to 200 yards or meters per pixel.

For more information about MRO, visit:



For more information about NASA's journey to Mars, visit:


Media Contact

Guy Webster
Jet Propulsion Laboratory, Pasadena, Calif.
guy.webster at jpl.nasa.gov

Dwayne Brown / Laurie Cantillo
NASA Headquarters, Washington
202-358-1726 / 202-358-1077
dwayne.c.brown at nasa.gov / laura.l.cantillo at nasa.gov

Received on Tue 15 Mar 2016 07:11:59 PM PDT

Help support this free mailing list:

Yahoo MyWeb