[meteorite-list] Arsenic Bacteria Hoax
From: info at moonmarsrocks.com <info_at_meteoritecentral.com>
Date: Mon, 09 Jul 2012 13:33:41 -0700 Message-ID: <20120709133341.b86ea499b59be1b7298b47d2f1127a77.26e8fd7748.wbe_at_email13.secureserver.net> Interesting article, Phil. It's always good to see that given a little time, collaborative science works things out. Having a couple Biology degrees myself, I would have been floored if it had been verified that the bacteria substituted arsenic for phosporus in its DNA. It will be interesting to see if they determine in follow up studies what the actual mechanism is by which the bacteria mitigates the presence of the arsenic in its environment. As the article mentions, due to their relative simple makeup, some bacteria have the ability to adapt and survive in very inhospitable Earth enviroments. There have been some inklings of it (nanobacteria of Allan Hills 84001), but someday I think we will likely see broadly agreed upon hard evidence for them in many non-terrestrial environments. Best, Daniel Daniel Noyes Genuine Moon & Mars Meteorite Rocks info at moonmarsrocks.com www.moonmarsrocks.com ------------------------------ Message: 6 Date: Mon, 9 Jul 2012 00:06:11 -0400 From: "JoshuaTreeMuseum" <joshuatreemuseum at embarqmail.com> Subject: [meteorite-list] Arsenic Bacteria Hoax To: <meteorite-list at meteoritecentral.com> Message-ID: <63BF6FFBB51F40319F12E314B7334D5E at ET> Content-Type: text/plain; format=flowed; charset="iso-8859-1"; reply-type=original Turns out it was a bogus publicity stunt: http://www.washingtonpost.com/national/health-science/journal-retreats-from-controversial-arsenic-paper/2012/07/08/gJQAFQb7WW_story.html?hpid=z3 Journal retreats from controversial arsenic paper By Marc Kaufman, Updated: Sunday, July 8, 10:05 PMThe Washington Post Two new studies of controversial research on a bacterium found in California's arsenic-rich Mono Lake led the journal Science on Sunday to say that the 2010 paper it published on the microbe was incorrect in some of its major findings. The original research, which also had been highlighted by NASA, reported that the bacterium could live in an environment with very high arsenic and very low phosphorus - one of the six elements known to be present in all living things. It consequently raised the possibility of life forms now or previously on Earth that break what had been accepted as a universal rule of biology. But two new studies of the bacterium, GFAJ-1, reported that it could not grow without the presence of phosphorus. The ?papers also challenged the original finding that small amounts of arsenic compounds had replaced phosphorus compounds in some DNA, membranes and other biologically central parts of the organism. "Contrary to an original report, the new research clearly shows that the bacterium, GFAJ-1, cannot substitute arsenic for phosphorus to survive," the journal concluded in a formal statement. "The new research shows that GFAJ-1 does not break the long-held rules of life, contrary to how [lead author Felisa] Wolfe-Simon had interpreted her group's data." Nonetheless, Science wrote that it would look with interest at further research regarding the bacterium, which it called "an extraordinarily resistant organism that should be of interest for further study, particularly related to arsenic-tolerance mechanisms." Wolfe-Simon, now on a NASA fellowship at the Lawrence Berkeley National Laboratory, is collaborating with senior scientist John A. Tainer on wide-ranging studies of the bacterium. In an interview Saturday, Wolfe-Simon and Tainer said that they had produced tentative results in the Berkeley lab almost identical to the original results at a U.S. Geological Survey laboratory, and that they were busy finishing the research and preparing another paper. Tainer said the two new studies in Science may have come to different results than theirs because of the methodologies used, the precision used to detect arsenates and the provenance of the cells. He said the authors of the two new papers "may well regret some of their statements" in the future. "There are many reasons not to find things - I don't find my keys some mornings," he said. "That doesn't mean they don't exist. The absence of a finding is not definitive." Wolfe-Simon and her numerous collaborators had made samples of GFAJ-1 broadly available after her initial results caused a storm of controversy, but she and Tainer said they may have been contaminated or modified in transit. She said that all the researchers agreed that the bacterium survived in extraordinarily high levels of usually toxic arsenic compounds but that they disagreed about whether the organism used the arsenic compound to grow and whether it had incorporated the arsenic into its biology. "I think it's unclear whether this is the last word," ?Wolfe-Simon said. "They're not finding something that could be there in a minor amount." One of the new studies in Science was conducted by a team centered at Princeton University that included Rosemary Redfield of the University of British Columbia. She was one of the first and most vocal critics of the original Wolfe-Simon paper, and she said Sunday she was satisfied with how the process has played out. "A very flawed paper was published and received an inordinate amount of publicity," she wrote in an e-mail. "But other researchers responded very quickly. .?.?. Now refutations of the work by two independent research groups are appearing in the same high-profile journal, and the refutations are being well publicized. This is how science is supposed to work." The new study Redfield was part of did not find any microbial growth when arsenates were provided to the bacteria without phosphates. Wolfe-Simon had initially reported that the bacterium grew when phosphorus compounds were withheld but arsenic compounds were provided. The new study also found no biologically mediated arsenic in the microbe's DNA, as ?Wolfe?Simon had reported. The paper concludes that the bacterium is an extreme life form but one that has adapted to its environment in a manner similar to many others that live in conditions long thought to be unsuitable for life. The second new study in Science came from a research group in Switzerland. That group also found no growth in the bacteria in a medium with arsenic compounds but no phosphorus. The paper suggested that Wolfe?Simon's initial finding may have missed the presence of extremely small amounts of phosphorus in the arsenic medium, which then allowed the bacterium to grow. The paper reported that the GFAJ-1 bacteria survived in a culture that had a ratio of arsenate to phosphate of 10,000 to 1, while other known arsenic-resistant microbes had ratios that were much lower. As a result, they concluded, the bacteria was a good candidate for further study. Phil Whitmer Joshua Tree Earth & Space Museum Received on Mon 09 Jul 2012 04:33:41 PM PDT |
StumbleUpon del.icio.us Yahoo MyWeb |