[meteorite-list] Green Fireballs and NEOs Part 1
From: MEM <mstreman53_at_meteoritecentral.com>
Date: Fri, 7 Oct 2011 22:34:23 -0700 (PDT) Message-ID: <1318052063.65838.YahooMailNeo_at_web161903.mail.bf1.yahoo.com> Part 1 The significance of Green Fireballs (double posted but not cross posted) Long time list members of the meteorobs list are aware of the concentration of reported fireballs this past spring and of ?green? fireballs-- there has been much discussion.? This two part post is to address the possible significance and relationship of green fireballs and Near Earth Objects(NEOs) especially Earth-crossing bodies. Be it remembered that all meteoroids entering our atmosphere are/were in Earth-crossing orbits and represent the closest of the close of NEOs!? The meteorite chasers community may take interest as the mix of successive colors of a meteor my provide clues as to the meteorite dropping potential of a particular event.? There is a documented higher flux of both fireballs and meteorite falls in early spring( citation later) The purpose of meteor observation traditionally has been to document meteor flux from cometary sources and identify new showers to identify the existence of long period comets. ?Thinking wholly within a particular box, the long standing focus has been to take snapshots of? meteor flux with not much statistical evaluation of the bulk data.? I surmise someone, somewhere, someday, might eventually correlate this data to comets? past and present, to whatever ends that research might tell us of recent comet populations and their orbits in the inner solar system. ?Virtually no effort is going on in the meteor observer community to identify asteroid-ally derived debris streams as the low density/frequency of observations places any potential pattern there may be into the category ?sporadic?.? Couple this with lock box thinking that ?such a thing could not exist? and no one may ever undertake such an attempt to make annual correlations. More on that in part two. A minuscule portion of observational effort has been capturing meteor spectral emissions.? Without a spectrometer, fireball colors are not easy to reliably categorize beyond basic color sequences as only the spectrometer and camera can record them with specificity. We should all realize how difficult it is to even capture a fireball on camera and how even more rare it is to capture the spectral emissions of a meteor through an even smaller aperture.? In fact, most? ?color discussions?, have favored the ?subjective perception of the observer" paradigm and not the specific atomic sources of the light emissions.? When color is noted, it is largely taken as a ?whole? rather than collection of specific emission lines of light viewed through a spectrometer and that is just the way the eye perceives color--by blending multiple wavelengths into a single hue.? When we mix enough wavelengths together we will always favor the "white fireball" when describing a meteor--unless there is a specific overriding hue. Well frequently there is such a natural bias and frequently it is green. What vignette examples? we do have of meteor spectra do not seem to have been methodically worked into a sound scientific theory regarding the significance of meteoritical light. Better late than never. For clarity a quick review of the spectral sources might be in order: I find at least three "sources" of light in a meteor?s flare and two of those overlap. 1) The spectral emission lines of the constituent elements/molecules of the meteoroid proper when they change phase into gas/plasma. 2) The excited state of the atmospheric gases/dust which the meteoroid acts upon-- mainly 5-6 species: N2, O2, O3,NO, N and O but at high velocity expands to at least 19 species of atoms/molecules including CO2, argon, H2O and so forth.( NOTE: this has implications for a different "typical" color of a meteor when viewed from the surface of Mars) 3) The change in chemical composition as existing molecules are disassociated and? new molecules form in a flash( pun intended) owing to recombination which may form species such as (CN)2 ,CO, Fe2O, FeC, Mg2O etc. not normally seen in the auroral spectra. The atoms/molecules from a meteoroid emit light because they are heated in an induced plasma stream when entering the atmosphere; they incandesce as well as chemically oxidize, emitting a more complicated assembly of spectral lines; loosely conceptualized such as the way that different compounds in fireworks provides for different colors. The atoms/molecules of the atmosphere are ionized in the super-hot bow wave ahead of the meteoroid, causing them to emit photons of certain specific wavelengths, depending on what elements are present --and what compounds reform in the furnace of entry as a mist of melted meteoroid enters the slip stream. Color saturation/intensity is also a function of density for the various atoms/molecules.? Nitrogen will tend to dominate over oxygen which will dominate over CO2 owing to bulk percentages in the makeup of the atmosphere. We will tend to see colors associated with Fe, Mg, N2 and O2 with a generic meteor, counter-mixed with atmospheric plasma.? To the eye, it will seem that there no more than two colors at once but usually a single overall hue within a bright overall flash. ( NOTE: human eye physiology-- cone and rod density, night vision, dazzle--? all come to play in perceived color) Moving on to specific spectral emissions, the common emissions for metallic atoms in meteors and for atmospheric atoms can be seen at. <http://leonid.arc.nasa.gov/meteor.html> Combinations of? two sources of emissions? produce the colors one sees in the fireball. ?Colors of meteors: The color of many meteors is caused (sic)by light emitted from metal atoms from the meteoroid (blue, green, and yellow) and light emitted by atoms and molecules of the air (red). The metal atoms emit light much like in our sodium discharge lamps: sodium (Na) atoms give an orange-yellow light, iron (Fe) atoms a yellow light, magnesium (Mg) a blue-green light, ionized calcium (Ca+) atoms may add a violet hue, while molecules of atmospheric nitrogen (N2) and oxygen atoms (O) give a red light.( Note: See discussion of spectral changes in? atomic vs molecular oxygen and nitrogen with decreasing altitude below)? The meteor color depends on whether the metal atom emissions or the air plasma emissions dominate?...NASA This simplistic model so far? described is good for starters but the atmosphere is more dense with lower altitude and a ?Real (non-equilibrium) gas model? is required to explain emission behavior.? <http://en.wikipedia.org/wiki/Atmospheric_entry> We might be able to stop here were it not for the fact that some atoms actually ?color shift? their emissions with altitude.? A curious paradox exists for atmospheric oxygen and nitrogen emissions which vary with altitude owing perhaps to atomic and molecular densities and the effects partial pressures might have on average atomic radii.( e.g. O2 vs O and N2 vs N) Illustration at: <http://www.flickr.com/photos/11304375 at N07/2844511020/>. As I annotate: "Nitrogen Oxygen Emissions with changes in altitude: Density of nitrogen and oxygen varies by altitude. This affects the colors of an aurora" (which is a substitute for meteor spectral behavior--not because it is complete but because it is far more deeply studied). "Oxygen atoms above 200 km produces a red hue, while below 200km a green hue is produced. Below 100 km not enough atomic oxygen exists to have an effect".( Curiously, O2? has about 19 spectral lines which are distributed seesaw fashion towards the ends of the visible spectrum with 3 green lines at the fulcrum.? Single atoms of oxygen have about three peaks under lab conditions). "Nitrogen produces blue and violet when it decays( e.g. molecular bonding broken by going plasma) at the middle altitudes and magenta at the lowest altitudes." The few meteor spectrographs captured so far suggest a combination of peaks.? An generic illustration can be seen at <http://leonid.arc.nasa.gov/meteor.html>.? What is not differentiated in this illustration is the fact that the total spectral output of a given meteor ( meteoroid plus atmosphere) are going to change as velocity and altitude decreases. When we combine what we understand from auroral and meteor spectra, we may infer that the deeper a meteoroid makes it into the atmosphere, the color will trend from reddish white, then longer at green perhaps capped by orange/red/magenta at the end of incandesence. Meteor spectra will differ from auroral spectra being doped by the composition of the meteoroid itself (i.e. Fe blue and Mg green, Na yellow). Be it also remembered that blue and yellow are seen as green.? In fact there are several factors which tend to make a fireball appear green much of the time below 200 km --more likely than not! All that said, I believe we may be able to use "color" as a coarse indicator of the depth of penetration into the atmosphere. To survive a deeper plunge requires a larger mass.? Ergo a green/bluish green fireball? ?tends to suggest? an asteroidal origin vs the sand grain-sized meteor of cometary origin-- all other things being equal.? Couple color with sporadics? and these are the fireballs which need to be evaluated against similar sightings around the same time year after year to seek out orbits of asteroidal debris streams.? As I?ll debate in part two, these presently ?random? fireballs may ultimately be associated with heliocentric earth-crossing NEOs. It should not be a surprise that asteroid debris will be strung out along an orbit stream much as a cometary stream only less densely and? spread more widely as it is not refreshed by new material each orbit. Elton Received on Sat 08 Oct 2011 01:34:23 AM PDT |
StumbleUpon del.icio.us Yahoo MyWeb |