[meteorite-list] Paper on chondrule formation and synthetic chondrules
From: starsandscopes at aol.com <starsandscopes_at_meteoritecentral.com>
Date: Tue, 19 Jan 2010 18:54:48 EST Message-ID: <153f0.5e7ebe00.3887a048_at_aol.com> Hi List, I thought some of you might enjoy this portion of a science paper on meteorite chondrules. It is part of a paper on microscopes posted in Molecular Expressions (An online microscope site) The first half of the paper is on microscopes so many of you will want to skip that part. Tom Phillips PHOTOMICROGRAPHY IN THE GEOLOGICAL SCIENCES Michael W. Davidson Institute of Molecular Biophysics Center for Materials Research and Technology (MARTECH) National High Magnetic Field Laboratory (NHMFL) Supercomputer Computations Research Institute (SCRI) Florida State University, Tallahassee, Florida 32306 Telephone: 850-644-0542 Fax: 850-644-8920 Gary E. Lofgren Planetary Materials Branch Solar System Exploration Division Code SN2 NASA Johnson Space Center Houston, Texas 77058 Telephone: 713-483-6187 Fax: 713-483-2696 The whole article is at http://micro.magnet.fsu.edu/publications/pages/journal.html Chondrules are small spheres (.1 to 10mm in diameter) which are the major constituent of chondritic meteorites. Chondrites are considered samples of primitive solar system materials. If we can understand how chondrules form, we will have an important clue to the early history of our solar system. Most chondrules have an igneous texture which forms by crystal growth (usually rapid) from a supercooled melt. Such textures are commonly described as porphyritic (large, equant crystals in a fine grained matrix), barred (dendrites comprised of parallel thin blades or plates), or radiating (sprays of fine fibers). The models proposed for formation of chondrules can be divided into two groups (McSween, 1977). In one group of models, chondrules form by melting and subsequent crystallization of preexisting, largely crystalline material from the solar nebula. The primary differences between these models are the kinds of materials which are melted and the nature of the sources of heat for the melting. In the other group of models, chondrules form by condensation of liquids from the solar nebula gas which then crystallize upon cooling. Variations between these models result from differences in the condensation sequence of the minerals and melts and the temperatures of nucleation. One means of testing models of chondrule formation is to determine the conditions necessary to duplicate these textures by experimentally crystallizing chondrule melts in the laboratory. Efforts to reproduce the textures of chondrules experimentally have been successful only when we began to understand the important role that heterogeneous nucleation plays in the development of igneous rock textures. Unless heterogeneous nuclei are present in the chondrule melt, porphyritic textures will not be produced. The dendritic or radiating textures will form instead. The treatment of heterogeneous nucleation follows the model developed by Turnbull (1950) to explain many of the characteristics of heterogeneous nucleation. This model was applied to heterogeneous nucleation in basaltic systems by Lofgren (1983). Simply stated, the model says that in any steady-state melt at a given temperature there is a characteristic distribution of embryos. The embryo is crystalline material which is smaller than the critical size necessary to be a stable nucleus and cause nucleation. It is a subcritical-sized potential heterogeneous nucleus. Embryos exist whether stable, supercritically-sized nuclei are present or not. If a melt is sufficiently superheated, embryos can be eliminated. Nucleation would then require a surface, presumably the container and the barrier to nucleation would be much higher than in the case where embryos were present. Qualitatively, such nucleation would resemble homogeneous nucleation; but, if a surface is available, the energy barrier would be much lower than for homogeneous nucleation. Glasses would form from chondrule melts most readily if they are superheated, thus destroying the embryos and increasing the barrier to nucleation. Lower melting temperatures would allow embryos to be retained. These can then grow upon cooling and become nuclei. Embryos also can become nuclei without changing size, because the size at which an embryo becomes a nucleus depends upon the degree of supercooling in the melt. Thus, an increase in the degree of supercooling can cause an embryo to become a nucleus and nucleation to occur. If relict crystals are present in the melt at the initiation of cooling, the more equilibrium-like crystals typical of porphyritic textures are formed. When such experiments are quenched, the final product contains glass or fine grained material, often dendritic, enclosing the equilibrium phenocrysts. An example of this texture produced in experiments is shown in Figure 7. Equant, well formed crystals of olivine are set in a glassy matrix with a few dendrites present. In the natural prophyritic chondrule the glass has usually crystallized to a very fine grained material. In general, the size of the phenocrysts decreases and their number increases as the temperature at which the crystalline starting material melted is lowered and thus the number of nuclei increases. The range of conditions that control the development of porphyritic texture has been studied as a function of variations in the number, distribution, and kinds of heterogeneous nuclei (Lofgren and Russell, 1986; Lofgren, 1989). The transition from porphyritic texture to radial or barred (dendritic) texture for melts of constant composition has been studied as a function of the presence or absence of heterogeneous nuclei and cooling rate. Such variations in texture within a single melt have already been demonstrated for melts of lunar and terrestrial basalt composition (Lofgren, 1980, 1983; Grove and Beatty, 1980). The "classic" barred olivine texture is a single plate dendrite (Donaldson, 1976) which shares the entire chondrule with the remaining glass or subsequent crystallization products. Olivine rimming the chondrule is often in optical continuity with the dendrite and thus is part of the plate dendrite. Because this texture is so striking, barred olivine (BO) chondrules are well known even to people outside the field of meteorites. When chondrules are discussed, a photomicrograph of a barred olivine texture is usually chosen as one of a few or even the only example. It is not surprising that considerable effort has been expended understanding its origin. Barred olivine textures comprise only a few percent of melt-textured chondrules, usually less than 5% (Gooding and Keil, 1981). The "classic" barred texture represents only 10% of the type 3 ordinary chondrite BO chondrules. By careful study, Weisberg (1987) determined that the multiple plate dendrite is a much more common that the single dendrite. Most investigators propose that BO chondrules form from melt droplets that crystallize rapidly upon cooling. Attempts to duplicate BO textures experimentally showed that it is difficult to produce the "classic" single dendrite chondrule; conversely, multiple plate dendrites are observed commonly in experimental charges (Lofgren and Lanier, 1990). It turns out to be very difficult to restrict nucleation to a single event. An example of a barred dendrite is shown in Figure 8. Each dendrite is a series of parallel plates connected in the third dimension with respect to the plane of the thin section. The dendrite forms when nuclei are eliminated from the melt and only embryos remain. If the melt is cooled rapidly and does not crystallize, it becomes supercooled and embryos eventually become stable nuclei. When an olivine nucleus begins to grow, it will become a dendrite if the supercooling is sufficiently high. These experiments clearly demonstrate the crystalline material must be present in the solar nebula when the chondrules form and suggests that they did not form by direct condensation from vapors in the solar nebula. Individual crystals most likely formed first and these were remelted in clusters to form the chondrules. An interesting fact that has come out of these studies is that the rate at which the melt droplets cool is not critical. They can cool at nearly the same rate and produce either the porphyritic texture if nuclei are present when cooling is initiated, or form dendrites (barred) chondrules if only embryos are present. The important factor is how hot the droplets become before they begin to cool and thus whether they retain any crystalline precursor material to act as nuclei or whether nuclei have to form from embryos. If the melt droplets are heated hot enough that even the embryos are eliminated, the droplets usually do not crystallize when cooled and form glass chondrules. Glass chondrules are rare and this places an upper temperature limit to which the melt droplets are heated which is approximately 1650?C. A minimum melting temperataure of 1550?C is dictated by the minimum amount of melting required to produce the observed textures. It is still not clear, however, what heat source provides such conditions (Wood, 1988). A popular model is heating due to viscous drag on particles as they move through dense parts of the solar nebula as proposed by Wood (1984 Chemical analysis of chondrites (Wasson, 1974) indicates that there is a variety in their composition leading us to believe that they are not all derived from a common source. Most chondrites are composed primarily of olivine, feldspar, orthopyroxene, with several metals including kamacite and taenite. Continuing studies on the chemical and physical nature of chondrites and their formation is providing insight into the history of the solar system. Received on Tue 19 Jan 2010 06:54:48 PM PST |
StumbleUpon del.icio.us Yahoo MyWeb |