[meteorite-list] NASA's Next Mars Rover to Zap Rocks With Laser

From: Ron Baalke <baalke_at_meteoritecentral.com>
Date: Wed, 22 Dec 2010 16:14:23 -0800 (PST)
Message-ID: <201012230014.oBN0ENbZ024952_at_zagami.jpl.nasa.gov>

http://www.jpl.nasa.gov/news/news.cfm?release=2010-428

NASA's Next Mars Rover to Zap Rocks With Laser
Jet Propulsion Laboratory
December 22, 2010

A rock-zapping laser instrument on NASA's next Mars rover has roots in a
demonstration that Roger Wiens saw 13 years ago in a colleague's room at
Los Alamos National Laboratory in New Mexico.

The Chemistry and Camera (ChemCam) instrument on the rover Curiosity can
hit rocks with a laser powerful enough to excite a pinhead-size spot
into a glowing, ionized gas. ChemCam then observes the flash through a
telescope and analyzes the spectrum of light to identify the chemical
elements in the target.

That information about rocks or patches of soil up to about 7 meters (23
feet) away will help the rover team survey the rover's surroundings and
choose which targets to drill into, or scoop up, for additional analysis
by other instruments on Curiosity. With the 10 science instruments on
the rover, the team will assess whether any environments in the landing
area have been favorable for microbial life and for preserving evidence
about whether life existed. In late 2011, NASA will launch Curiosity and
the other parts of the flight system, delivering the rover to the
surface of Mars in August 2012.

Wiens, a geochemist with the U.S. Department of Energy's Los Alamos
National Laboratory, serves as ChemCam's principal investigator. An
American and French team that he leads proposed the instrument during
NASA's 2004 open competition for participation in the Mars Science
Laboratory project, whose rover has since been named Curiosity.

In 1997, while working on an idea for using lasers to investigate the
moon, Wiens visited a chemistry laboratory building where a colleague,
Dave Cremers, had been experimenting with a different laser technique.
Cremers set up a cigar-size laser powered by a little 9-volt radio
battery and pointed at a rock across the room.

"The room was well used. Every flat surface was covered with
instruments, lenses or optical mounts," Wiens recalls. "The filing
cabinets looked like they had a bad case of acne. I found out later that
they were used for laser target practice."

Cremers pressed a button. An invisible beam from the laser set off a
flash on a rock across the room. The flash was ionized gas, or plasma,
generated by the energy from the laser exciting atoms in the rock. A
spectrometer pointed at the glowing plasma recorded the intensity of
light at different wavelengths for determining the rock's atomic
ingredients.

Researchers have used lasers for inducing plasmas for decades. What
impressed Wiens in this demonstration was the capability to do it with
such a low-voltage power source and compact hardware. Using this
technology for a robot on another planet seemed feasible. From that
point, more than a decade of international development and testing
resulted in ChemCam being installed on Curiosity in September 2010.

The international collaboration came about in 2001 when Wiens introduced
a former Los Alamos post-doctoral researcher, Sylvestre Maurice, to the
project. The core technology of ChemCam, laser-induced breakdown
spectroscopy, had been used for years in France as well as in America,
but it was still unknown to space scientists there. "The technique is
both flashy and very compelling scientifically, and the reviewers in
France really liked that combination," Maurice said. A French team was
formed, and work on a new laser began.

"The trick is very short bursts of the laser," Wiens said. "You really
dump a lot of energy onto a small spot -- megawatts per square
millimeter -- but just for a few nanoseconds."

The pinhead-size spot hit by ChemCam's laser gets as much power focused
on it as a million light bulbs, for five one-billionths of a second.
Light from the resulting flash comes back to ChemCam through the
instrument's telescope, mounted beside the laser high on the rover's
camera mast. The telescope directs the light down an optical fiber to
three spectrometers inside the rover. The spectrometers record intensity
at 6,144 different wavelengths of ultraviolet, visible and infrared
light. Different chemical elements in the target emit light at different
wavelengths.

If the rock has a coating of dust or a weathered rind, multiple shots
from the laser can remove those layers to provide a clear shot to the
rock's interior composition. "We can see what the progression of
composition looks like as we get a little bit deeper with each shot,"
Wiens said.

Earlier Mars rover missions have lacked a way to identify some of the
lighter elements, such as carbon, oxygen, hydrogen, lithium and boron,
which can be clues to past environmental conditions in which the rock
was formed or altered. After NASA's Mars Exploration Rover Spirit
examined an outcrop called "Comanche" in 2005, it took years of
analyzing indirect evidence before the team could confidently infer the
presence of carbon in the rock. A single observation with ChemCam could
detect carbon directly.

ChemCam will be able to interrogate multiple targets the same day,
gaining information for the rover team's careful selection of where to
drill or scoop samples for laboratory investigations that will take
multiple days per target. It can also check the composition of targets
inaccessible to the rover's other instruments, such as rock faces beyond
the reach of Curiosity's arm.

The instrument's telescope doubles as the optics for the camera part of
ChemCam, which records images on a one-megapixel detector. The
telescopic camera will show context of the spots hit with the laser and
can also be used independently of the laser.

The French half of the ChemCam team, headed by Maurice and funded by
France's national space agency, provided the instrument's laser and
telescope. Maurice is a spectroscopy expert with the Centre d'??tude
Spatiale des Rayonnements, in Toulouse, France. Los Alamos National
Laboratory supplied the spectrometers and data processor inside the
rover. The optical design of the spectrometers came from Ocean Optics,
Dunedin, Fla.

The ChemCam team includes experts in mineralogy, geology, astrobiology
and other fields, with some members also on other Curiosity instrument
teams.

With the instrument now installed on Curiosity, testing continues at
NASA's Jet Propulsion Laboratory, Pasadena, Calif. JPL, a division of
the California Institute of Technology in Pasadena, is assembling the
rover and other components of the Mars Science Laboratory flight system
for launch from Florida between Nov. 25 and Dec. 18, 2011.

Guy Webster 818-354-6278
Jet Propulsion Laboratory, Pasadena, Calif.
Guy.webster at jpl.nasa.gov

2010-428
Received on Wed 22 Dec 2010 07:14:23 PM PST


Help support this free mailing list:



StumbleUpon
del.icio.us
reddit
Yahoo MyWeb