[meteorite-list] Rosetta Begins Its 10-Year Journey To Comet Churyumov-Gerasimenko
From: Ron Baalke <baalke_at_meteoritecentral.com>
Date: Thu Apr 22 10:32:45 2004 Message-ID: <200403021624.IAA15392_at_zagami.jpl.nasa.gov> European Space Agency Paris, 2 March 2004 Press Release N° 14-2004 Rosetta begins its 10-year journey to the origins of the Solar System Europe's Rosetta cometary probe has been successfully launched into an orbit around the Sun, which will allow it to reach the comet 67P/Churyumov-Gerasimenko in 2014 after three flybys of the Earth and one of Mars. During this 10-year journey, the probe will pass close to at least one asteroid. Rosetta is the first probe ever designed to enter orbit around a comet's nucleus and release a lander onto its surface. For over a year it will conduct a thorough study of this remnant of the primitive nebula which gave birth to our Solar System about 5 billion years ago. Rosetta's mission began at 08h17 CET (07h17 GMT) on 2 March when a European Ariane 5 launch vehicle liftered off from the Guiana Space Centre, Europe's spaceport in Kourou, French Guiana. The launcher successfully placed its upper stage and payload into an eccentric coast orbit (200 x 4000 km). About two hours later, at 10h14 CET (09h14 GMT) the upper stage ignited its own engine to reach an escape velocity in order to leave the Earth's gravity field and enter heliocentric orbit. The Rosetta probe was released about 18 minutes later. "After the recent success of Mars Express, Europe is now heading to deep space with another fantastic mission. We will have to be patient, as the rendezvous with the comet will not take place until ten years from now, but I think it's worth the wait" said ESA's Director General Jean-Jacques Dordain witnessing the launch from Kourou. ESA's Operations Centre (ESOC) in Darmstadt, Germany, has established contact with the probe as it flies away from Earth at a relative speed of about 3.4 km/s. ESOC will be in charge of Rosetta operations and orbit determination throughout the mission. During the next eight months, the spacecraft’s onboard systems will be checked and its science payload will be commissioned. A 10-year odyssey Rosetta will be reactivated for planetary flybys, which will be used to modify its trajectory through gravity assist manoeuvres. During the trip, the probe could also observe one or more asteroids, observation of asteroids being one of the mission's secondary objectives. The first planetary encounter will be in March 2005, as Rosetta flies by the Earth for the first time. The gravity assist will boost Rosetta into an orbit that will take it to Mars two years later. During its close encounter with Mars in February 2007, Rosetta will approach to a distance of about 200 km and conduct science observations. This Martian flyby will be followed by another Earth flyby in November the same year. Both planetary encounters will increase the probe's orbital energy and boost it well into the asteroid belt. A third and last flyby of the Earth in November 2009 will send Rosetta toward the orbit of comet Churyumov-Gerasimenko. Then, by mid-2011, when it is about 800 million km from the Sun, Rosetta will ignite its main engine for a major deep-space manoeuvre that will place it onto an interception trajectory with the comet, which will take nearly three years to be reached. Rosetta will be reactivated for good in January 2014, as it enters a six-month approach phase, closing in slowly on the nucleus of comet Churyumov-Gerasimenko. The comet will then still be far from the Sun and should not be active. Rendezvous with a comet Like comet 46P/Wirtanen, which was the planned target for Rosetta until its launch was postponed in early 2003, comet 67P/Churyumov-Gerasimenko is one of the periodic comets that were "trapped" in the inner Solar System after they came too close to Jupiter. This comet was discovered in September 1969 at the Almaty Astrophysical Institute in Kazakhstan. It was detected by astronomer Klim Churyumov, from the University of Kiev, Ukraine, on pictures taken by his colleague Svetlana Gerasimenko, from the Institute of Astrophysics of Dushanbe, Tajikistan. Rosetta will start accompanying the comet's nucleus in August 2014. It will then conduct detailed mapping of its surface and a landing site will be selected for Philae, its 100 kg lander. Philae will be dropped from an altitude of about 1 km and, due to the tiny gravity of the nucleus, it will touch down at walking speed. The lander will even have to anchor itself to the surface with two harpoons to avoid bouncing back. Philae is expected to operate from the surface for several weeks, sending back very high resolution pictures and as information about the upper crust of the nucleus. These data will be relayed to Earth by the orbiter. Rosetta will continue its observations of the comet's nucleus for over a year, at least until December 2015, and will have a ringside seat to monitor the "awakening" of the comet's activity as it comes closer to the Sun and reached its perihelion, in October 2015. Probing the comet The Rosetta probe was built for ESA by an industrial team of over 50 European companies led by EADS Astrium. It is a 3 tonne spacecraft with solar arrays spanning an impressive 32 metres. This is the first probe designed to travel beyond the orbit of Mars to rely on solar cells for its power supply. In addition to the Philae lander, Rosetta incorporates a 165 kg science payload consisting of 11 instruments developed in partnership by ESA member countries and by the the United States. Four of these instruments are dedicated to observation of the nucleus: the ALICE ultraviolet spectrometer, the OSIRIS high-resolution camera, the VIRTIS imaging spectrometer and the MIRO microwave radiometer /spectrometer. Three more instruments will study the composition of the nucleus and its emanations; the COSIMA and ROSINA spectrometers and the MIDAS microscope. The GIADA collector will analyse dusts in the vicinity of the nucleus while the RPC group of sensors will characterise the internal structure of the comet's coma and its interaction with the solar wind. The last two instruments, CONSERT and RSI, will use radio waves, one to probe the internal structure of the nucleus and the other to determine the distribution of masses inside the nucleus and the structure of the coma. The Philae lander, developed under the leadership of Germany's DLR aerospace research agency, carries 9 instruments provided by ESA member countries in partnership with the United States, Hungary and Russia. Among these, the ÇIVA/ROLIS set of cameras will provide panoramic and stereoscopic high-resolution views. The APXS, COSAC and Ptolemy instruments will analyse soil compounds. The SESAME seismometer will probe the surface to a depth of 2 m, while its characteristics will be studied by the MUPUS instrument with sensors on the anchoring harpoon. The ROMAP magnetometer and a second model of the CONSERT experiment will study the magnetic field and its interactions with the solar wind. The Rosetta Stone - unearthed in Egypt more than 200 years ago - gave XIXth-century Egyptologists the keys to decipher hieroglyphic writing and to rediscover three millennia of forgotten Egyptian history and culture. The in-depth study of a comet's nucleus and asteroids by the Rosetta probe is expected to enable today's science community to decipher the mystery of the origins of our Solar System and to better understand the mechanisms ruling the formation of planetary systems around other stars. For more information please contact: ESA Media Relations Division Tel: +33(0) 1 5369 7155 Fax: +33(0) 1 5369 7690 ----------------------------------------------------------- http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=34784 Rosetta On Its Way European Space Agency March 2, 2004 After two previous launch attempts had been postponed Rosetta finally set off on its long journey to comet 67/P Churyumov-Gerasimenko at 0717 UT 2 March 2004. Arianespace Flight 158, with its Ariane 5 rocket and modified upper stage, successfully placed Rosetta onto an escape trajectory and out into the solar system. 1330 UT The solar panels have now been successfully deployed and the spacecraft is receiving power through them. 0937 UT ESOC takes over control of the mission and begins communicating with the spacecraft. 0933 UT Successful separation of the Rosetta spacecraft. 0932 UT Shut down of the EPS stage on schedule at an altitude of around 1200 km and a velocity of around 10 250 ms-1. 0928 UT Signal acquisition at the Kourou tracking station confirms an altitude of 750 km and a velocity of 10 180 ms-1. Rosetta is looking good for separation in a couple of minutes time. 0916 UT Ignition of the EPS upper stage at an altitude of around 550 km and a velocity of 7500 ms-1. By the end of the 17 minute engine burn Rosetta will be travelling at over 10 000 ms-1. 0904 UT Acquisition of signal at the South Point Tracking Station Hawaii. 0805 UT Acquisition of signal at the Dongara tracking station in Australia. 0729 UT Ariane 5 has moved into a ballistic phase. The main cryogenic stage having burnt all its fuel has been jettisoned. Rosetta and the upper stage of Ariane 5 have now gone into orbit around the Earth starting from an altitude of 250 km. During the orbit the combined upper stage and spacecraft will reach a peak altitude of 4000 km before coming back closer to the Earth. At around 0910 UT the upper stage will fire accelerating the Rosetta spacecraft to escape velocity and out into the Solar System. 0725 UT Acquistion by tracking station at Natal 0720 UT Booster stages have been successfully jettisoned 0717 UT Ariane 5 Flight 158 powers off the launch pad and Rosetta begins her journey to 67/P Churyumov-Gerisamenko 0710 UT "All systems go" and start of the synchronised sequence. 0607 UT Checks of the connections between launcher and telemetry, tracking and command systems have just taken place. 2 March 0357 UT Chilldown of Vulcain main stage engine 2 March 0227 UT Start of filling of main cryogenic stage with liquid oxygen and hydrogen. 1 March 2347 UT Check of electrical systems 1 March 1947 UT Start of final countdown Received on Tue 02 Mar 2004 11:24:45 AM PST |
StumbleUpon del.icio.us Yahoo MyWeb |