[meteorite-list] Mars Odyssey THEMIS Images - April 15-19, 2002
From: Ron Baalke <baalke_at_meteoritecentral.com>
Date: Thu Apr 22 09:50:28 2004 Message-ID: <200204191713.KAA28167_at_zagami.jpl.nasa.gov> MARS ODYSSEY THEMIS IMAGES April 15-19, 2002 o Eastern Floor of Holden Crater (Released 15 April 2002) http://themis.la.asu.edu/zoom-20020415a.html o Medusae Fossae Formation (Released 16 April 2002) http://themis.la.asu.edu/zoom-20020416a.html o Holden Crater/Uzboi Valles (Released 17 April 2002) http://themis.la.asu.edu/zoom-20020417a.html o Bosporus Planum (Released 18 April 2002) http://themis.la.asu.edu/zoom-20020418a.html o White Rock (Released 19 April 2002) http://themis.la.asu.edu/zoom-20020419a.html All of the THEMIS images are archived here: http://themis.la.asu.edu/latest.html NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena. ---------------------------------------------------------------------------- http://themis.la.asu.edu/zoom-20020415a.html Mars 2001 Odyssey Thermal Emission Imaging System (THEMIS) Eastern Floor of Holden Crater (Released 15 April 2002) The Story With its beautiful symmetry and gullies radially streaming down to the floor, the dominant crater in this image is an impressive focal point. Yet, it is really just a small crater within a much larger one named Holden Crater. Take a look at the context image to the right to see just how much bigger Holden Crater is. Then come back to the image strip that shows the mottled surface of Holden Crater's eastern floor in greater detail, and count how many hills, ridges, channels, and small impact craters can be seen. No perfectly smooth terrain abounds there, that's for sure. The textured terrain of Holden Crater has been particularly intriguing ever since the Mars Orbital Camera on the Mars Global Surveyor spacecraft found evidence of sedimentary rock layers there that might have formed in lakes or shallow seas in Mars' ancient past. This finding suggests that Mars may have been more like Earth long ago, with water on its surface. Holden Crater might even have held a lake long ago. No one knows for sure, but it's an exciting possibility. Why? If water was once on the surface of Mars long enough to form sedimentary materials, maybe it was there long enough for microbial life to have developed too. (Life as we know it just isn't possible without the long-term presence of liquid water.) The question of life on the red planet is certainly tantalizing, but scientists will need to engage in a huge amount of further investigation to begin to know the answer. That's why orbital images of Holden Crater like this one are so important. They continue to help scientists piece together the answers to their fundamental questions about the planet's environment and its potential as a past or present habitat for life. The Science Today's THEMIS image covers territory on the eastern floor of Holden Crater, which is located in region of the southern hemisphere called Noachis Terra. Holden Crater is 154 km in diameter and named after American Astronomer Edward Holden (1846-1914). This image shows a mottled surface with channels, hills, ridges and impact craters. The largest crater seen in this image is 5 km in diameter. This crater has gullies and what appears to be horizontal layers in its walls. This image is the 14th image in a series of daily images released by the THEMIS Team. ---------------------------------------------------------------------------- http://themis.la.asu.edu/zoom-20020416a.html Mars 2001 Odyssey Thermal Emission Imaging System (THEMIS) Medusae Fossae Formation (Released 16 April 2002) The Story "Yardang!" Now, that may seem like a peculiar-sounding curse word, but nobody would get in trouble for using it. A yardang is one of the very cool-sounding words geologists use to describe long, irregular features like the ones seen in this image. Yardangs are grooved, furrowed ridges that form as the wind erodes away weakly cemented material in the region. Rippling across the surface, yardangs tell the story of how the powerful Martian wind carved the surface into such a gorgeous pattern over time. (Don't miss clicking on the above image to see a detailed view, in which the beauty and almost dance-like symmetry of the waving terrain pops out in highly compelling, three-dimensional texture.) It may be easy to see which way the wind blows in this area, since these streamlined features point in the direction of prevailing winds. But how can geologists understand the various kinds of terrain seen here? First, they have to study the different patterns of erosion, looking closely at how the wind has stripped off certain layers and not others. Want to be a geologist yourself? Start at the bottom of the image and scroll upward, and see how the relatively smooth, higher terrain toward the south gradually becomes more and more eroded. Moving up the image, at first you'll see only a few, isolated regions of parallel ridges and knolls. Go a little farther north with your eyes (toward the center of the image), and you'll see how these linear knobs really get going! Once you get to the top of the image, only patches of these grooved ridges remain, leaving an incredibly smooth, wind-scrubbed surface behind. You know this layer has to be made of pretty hard material, because it seems impervious to further erosion. Geologists studying Mars can compare these Martian yardangs to examples found on Earth, such as those in the Lut desert of Iran. Humans have even been known to use the wind as their inspiration, sculpting the shape of yardangs themselves. The famous sphynx at Giza in Egypt is thought to be a yardang that's been whittled down a little more by ancient human chiselers. The Science This THEMIS visible image was acquired near 11° N, 159° W and shows examples of the remarkable variations that can be seen in the erosion of the Medusae Fossae Formation. This Formation is a soft, easily eroded deposit that extends for nearly 1,000 km along the equator of Mars. In this region, like many others throughout the Medusae Fossae Formation, the surface has been eroded by the wind into a series of linear ridges called yardangs. These ridges generally point in direction of the prevailing winds that carved them, and demonstrate the power of martian winds to erode the landscape of Mars. The easily eroded nature of the Medusae Fossae Formation suggests that it is composed of weakly cemented particles, and was most likely formed by the deposition of wind-blown dust or volcanic ash. Within this single image it is possible to see differing amounts of erosion and stripping of layers in the Medusae Fossae Formation. Near the bottom (southern) edge of the image a rock layer with a relatively smooth upper surface covers much of the image. Moving upwards (north) in the image this layer becomes more and more eroded. At first there are isolated regions where the smooth unit has been eroded to produce sets of parallel ridges and knobs. Further north these linear knobs increase in number, and only small, isolated patches of the smooth upper surface remain. Finally, at the top of the image, even the ridges have been removed, exposing the remarkably smooth top of hard, resistant layer below. This sequence of layers with differing hardness and resistance to erosion is common on Earth and on Mars, and suggests significant variations in the physical properties, composition, particle size, and/or cementation of these martian layers. As is common throughout the Medusae Fossae Formation, very few impact craters are visible, indicating that the surface exposed is relatively young, and that the process of erosion may be active today. This image is the 15th image in a series of daily images released by the THEMIS team. ---------------------------------------------------------------------------- http://themis.la.asu.edu/zoom-20020417a.html Mars 2001 Odyssey Thermal Emission Imaging System (THEMIS) Holden Crater/Uzboi Valles (Released 17 April 2002) The Story Mars doesn't have a shortage of rugged terrain, and this area is no exception. While things look pretty quiet now, this cratered region was once the scene of some tremendous action. Long ago in Martian history, an incoming meteroid probably smashed into the planet and produced a giant impact crater named Holden Crater, which stretches 88 miles across the Martian surface. The history of the area around Holden Crater doesn't stop there. At some point, a catastrophic flood burst forth on the surface, forming an impressive outflow channel called Uzboi Valles. No one knows exactly how that happened, or whether the water might even have rushed into Holden Crater at some point, forming a long-ago lake. What we do know is that there is a lot of sedimentary material that could have formed in two hypothesized ways: in an ancient lake environment or as volcanic-ash deposits. Scientists are searching for the answers by studying the region where Uzboi Valles meets the crater. You can see the rough edge of Holden Crater running diagonally down in a sharply edged swath (from the top left-hand corner of this image to the center right-hand side). Just below it, running almost smoothly down the right-hand side of the image is an intriguing channel where water may once have flowed. Much of the terrain in the bottom half of the image, in fact, seems to be cut into a swish-swash of dissected sedimentary terrain. Sliced through in such a way, the terrain ends up carrying bunches of small, rounded hills called "hummocks." Earth can boast of its own rolling, hummocky terrain too, such as that found in the ravine-cut Missouri Hills and High Plains areas of South Dakota. The Science This image, located near 27.0S and 35.5W, displays the intersection of Holden Crater with Uzboi Valles. This region of Mars contains a number of features that could be related to liquid water on the surface in the Martian past. Holden Crater contains finely layered sedimentary units that have been subsequently dissected. The hummucky terrain in the bottom half of the image is the remnants of this terrain, though the fine layers are not visible in this image at this resolution. The sedimentary units could have formed through deposition of material in a lacustrine type environment. Alternately, these layers could also be volcanic ash deposits. Uzboi Valles, which enters the crater from the southwest, is a catastrophic outflow channel that formed in the Martian past. The streamlined nature of the topographic features at the intersection of the crater with Uzboi Valles record the erosional pattern of flowing liquid water on the surface of Mars during the episodic outflow event. This image is the 16th image in a series of daily images released by the THEMIS team. ---------------------------------------------------------------------------- http://themis.la.asu.edu/zoom-20020418a.html Mars 2001 Odyssey Thermal Emission Imaging System (THEMIS) Bosporus Planum (Released 18 April 2002) The Story Splat! Take a look at the lumpy edge of the large crater half (left-hand side of the image) and compare it to the much neater rims of other craters in the region. Why is there such a difference? Scientists believe that when something hit the surface of Mars long ago, ice may have been present in the subsurface and was "regurgitated" upward into the Martian air along wih dirt and rock, "splooshing" outward. When that happened, the mixed-up, ejected material created a wavering, batter-like edge that is not typical for most (ice-free) craters. More ejected material from this same impact radiates much farther out from the crater, giving it a vague, sun-like appearance. Many of the small craters in this image appear much fainter and more subdued than the others. Their ghostly appearance may be due to a lava flow that smoothed out most of the terrain in this image, partially burying them . . . . Or???? Maybe it was a layer of dust that settled in this region to accomplish the same concealed look. And what about that scar-like trek that cuts through the upper third of the image? It's an elongated fault created when a crust-breaking, tectonic force ripped apart the Martian terrain, leaving a long depression on the surface. This feature is called a graben, and we find them on Earth too (think of Death Valley, the lowest dry land in the United States, or the Jordan Dead Sea depression). The graben's rumpled, scar-like appearance is only enhanced by the stitchy-looking sand dunes that run down its sides. This dune pattern shows that the Martian wind probably blew down through the graben canyon to create their ruffled appearance. The wind doesn't have its way everywhere, though. The brighter surface material on the western side of the two diagonally positioned smaller craters is probably a layer of dust that has been shielded from removal by the craters' higher rims. Dark streaks (possibly dark sand) on the opposite side of these craters reveal that the wind has been blowing to no avail in the opposite direction too. So, think that explains everything in this image? Here's a quick geology quiz! Which features happened first? The dunes, the lava plains, the big crater, or the linear depression called a graben? To find out if you're right, check out the last paragraph in The Science caption. Hint! Whatever happened later has to be on top of whatever came before. The Science This THEMIS image is of Bosporus Planum, located in a region of smooth plains that appear to have formed from lava flows. A crater, ~7 km in diameter, on the left edge of the image has produced an ejecta blanket that can be seen radiating from the crater. Lobes of ejecta such as those seen close to the crater rim are not formed at most typical craters and may indicate that there was a ice component in the sub-surface material when the impact occurred. A linear depression trending from the northwest to southeast along the top of the image is about 1 to 2 km wide. This may be a tectonic feature, known as a graben, that forms when a region is under stresses that are pulling it apart. There are numerous small bright dunes or ripples along the margins of the floor of this linear feature that have formed perpendicular to the sides of the graben. This pattern of ripples suggests that the wind was blowing down the graben canyon. Similar small bright dunes can be faintly seen on top of the crater ejecta along ridges (most apparent directly to the east of the crater) and along the southern margin of the interior deposits in the crater. Bright wind streaks are also apparent in this area to the west (right) of several large craters. These streaks likely formed when very small particle size materials (like dust) is deposited on the surface and then protected from removal by the wind shadow produced by the crater's rim. Shorter dark streaks, possible deposits of dark sand, have formed to the east side of the smaller craters. These streaks on opposite sides of craters may indicate that there have been different wind patterns in the area, blowing in opposite directions. Subtle ridges near the south end of the image hint that there may have been other graben that have been nearly filled in. Many of the craters in this image have a subdued, buried appearance and may have been partially filled by lava flows or mantled by dust. A short geologic history of the area in this image can be created using the basic principles of geology, such as the principle of superposition (deposits that lie on top of other materials are younger). The linear depression must have formed after the deposition of the lava plains since it is a feature that would not have been otherwise preserved. Ejecta from the large crater has been deposited inside and over the edges of the linear depression, thus the crater must have formed after the linear depression. Finally, the bright dunes and dust streaks formed last because they have been deposited on top of all of these different features. ---------------------------------------------------------------------------- http://themis.la.asu.edu/zoom-20020419a.html Mars 2001 Odyssey Thermal Emission Imaging System (THEMIS) White Rock (Released 19 April 2002) The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can't see . . . things like information about what kinds of minerals make up the landforms. Mars scientists once thought, for instance, that these unusual features might be vast hills of salt, the dried up remains of a long-ago, evaporated lake. Not so, said an instrument on the Mars Global Surveyor spacecraft, which revealed that the bright material is probably made up of volcanic ash or windblown dust instead. And talk about a cyclical "ashes to ashes, dust to dust" story! Particles of this material fell and fell until they built up quite a sedimentary deposit, which was then only eroded away again by the wind over time, leaving the spiky terrain seen today. It looks white, but its apparent brightness arises from the fact that the surrounding material is so dark. Of course, good eyesight always helps in understanding. A camera on Mars Global Surveyor with close-up capabilities revealed that sand dunes are responsible for the smudgy dark material in the bright sediment and around it. But that's not all. The THEMIS camera on the Mars Odyssey spacecraft that took this image reveals that this ashy or dusty deposit once covered a much larger area than it does today. Look yourself for two small dots of white material on the floor of a small crater nearby (center right in this image). They preserve a record that this bright deposit once reached much farther. Since so little of it remains, you can figure that the material probably isn't very hard, and simply blows away. One thing's for sure. No one looking at this image could ever think that Mars is a boring place. With all of its bright and dark contrasts, this picture would be perfect for anyone who loves Ansel Adams and his black-and-white photography. The Science "White Rock" is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. Received on Fri 19 Apr 2002 01:13:38 PM PDT |
StumbleUpon del.icio.us Yahoo MyWeb |