[meteorite-list] Tweak Temperatures of Smaller Asteroids To Deflect Them From Earth, UA Scientist Suggests

From: Ron Baalke <baalke_at_meteoritecentral.com>
Date: Thu Apr 22 09:50:23 2004
Message-ID: <200204042016.MAA15531_at_zagami.jpl.nasa.gov>

TWEAK TEMPERATURES OF SMALLER ASTEROIDS
TO DEFLECT THEM FROM EARTH, UA SCIENTIST SUGGESTS

>From Lori Stiles, University of Arizona News Services, 520-621-1877
April 4, 2002

Humans could deflect small but dangerous asteroids from Earth by changing
how much sunlight the asteroids reflect, a University of Arizona planetary
scientist suggests in the current issue (April 5) of Science.

Possible schemes might include covering the upper few centimeters of the
asteroid with dirt, or painting its surface white, or fusing part of its
surface with a spaceborne solar collector all technically feasible and
civically preferable to launching a nuclear warhead to blast an incoming
asteroid off course.

Changing how much heat a space rock radiates will change how it drifts in
its orbit because of the Yarkovsky effect, said Joseph N. Spitale of the UA
Lunar and Planetary Laboratory in his article, "Asteroid Hazard Mitigation
Using the Yarkovsky Effect."

The Yarkovsky effect is a long-known but long-obscure phenomenon named for
the Polish engineer who first described it around 1900. The effect is caused
because when an unevenly heated body re-radiates heat, hotter spots are
subjected to a stronger recoil force than are cooler spots. As I.O.
Yarkovsky noted, the differences in momentum nudge the object so that it
drifts slightly in its orbit, Spitale said. The effect is a relatively small
force, but it accumulates through time.

Not until the mid-1990s did planetary scientists begin to realize how
important the Yarkovsky effect is in calculating motions of asteroid
fragments in the belt between Mars and Jupiter. These include Cornell
University's William F. Bottke Jr., David P. Rubincam of NASA Goddard Space
Flight Center, Paolo Farinella of the University of Pisa in Italy, David
Vokrouhlicky of Charles University in the Czech Republic, and William
Hartmann of the Planetary Science Institute in Tucson.

The mechanism explains why more asteroid fragments than otherwise can be
predicted are launched from the main asteroid belt toward Earth, hitting as
meteorites, according to their papers. And it explains how space rocks can
drift for millions of years before arriving at main belt asteroid
"resonance" zones from which they're flung to the inner solar system, they
conclude.

"It's pretty clear that this is an important effect when it comes to getting
material from the asteroid belt to the inner planets," Spitale said in an
interview.

He's working to develop a sophisticated thermal model to use to precisely
calculate Yarkovsky drift for specific asteroids. Asteroid shape, spin,
composition and surface details all must be factored in to get a precise
orbit for a specific asteroid.

In his Science article, Spitale describes his calculations of Yarkovsky
drift for three stony near-Earth asteroids, 6489 Golevka (300 meters
diameter), 1566 Icarus (one kilometer diameter) and 1620 Geographos (2.5
kilometers diameter).

The idea then is to change a threatening asteroid's surface temperatures so
that, over decades or centuries, its orbit veers away from Earth.

"You might take one of the smaller bare-rock bodies and put a lot of dirt on
it, for a dramatic change in thermal conductivity," Spitale said.
"Blanketing the asteroid with a centimeter of dirt is technically feasible,
but it would be expensive.

"Another way you could do it would be to paint it. If you could cover the
surface with a millimeter of white material, you could 'turn off' the
Yarkovsky effect altogether. That could produce a fairly big change in where
the body would be in another century or so.

"This would be effective in another approach, suggested by Jay Melosh (UA
professor of planetary sciences). It is to use a solar collector - basically
just a big dish that focuses sunlight on a body to fuse a region of the
surface and blast off mass, so the object changes course because of its
different mass. But in the process of this, you'd also change the thermal
conductivity of the asteroid, giving it a new orbit also because of the
Yarkovsky effect."

Spitale said the proposed technique would be useless for a large asteroid or
an asteroid less than decades away from Earth.

"This technique will work best on objects the size of Golevka or smaller
(300 meters, about 1,000 feet, or smaller). An object that size could do
damage to the better part of a country. Even a 100-meter or 50-meter object
can take out a good part of a city."

"The biggest technical problem right now with this approach is just doing
the calculations to understand how we'd actually be affecting the orbit by
doing something to an asteroid surface," Spitale said.

If the orbit is miscalculated, an object on course to deliver Earth a
glancing blow may be "mitigated" into an object on course to deliver a
direct hit.

The flip side of that is, you need a good model to compute Yarkovsky effect
perturbations even to know which asteroids pose real hazards, Spitale added.
"That may be the most important use of all for this model, to predict which
are going to hit in the first place," he said.

------------------------------------------------------------------------
Contact Information
Joseph N. Spitale
520-621-1471 spitale_at_lpl.arizona.edu
------------------------------------------------------------------------
Received on Thu 04 Apr 2002 03:16:30 PM PST


Help support this free mailing list:



StumbleUpon
del.icio.us
reddit
Yahoo MyWeb